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ABSTRACT

Widespread public demand for improved access, political
pressure for shorter wait times, a stretched workforce, an aging
population and overutilized equipment and facilities challenge
healthcare leaders to adopt new management approaches. This
paper highlights the significant benefits that can be achieved
by applying operations research (OR) methods to healthcare
management. It shows how queuing theory provides managers
with insights into the causes for excessive wait times and the
relationship between wait times and capacity. It provides a case
study of the use of several OR methods, including Markov decision
processes, linear programming and simulation, to optimize the
scheduling of patients with multiple priorities. The study shows
that by applying this approach, wait time targets can be attained
with the judicious use of surge capacity in the form of overtime.
It concludes with some policy insights.

Healthcare systems throughout the world face long and
increasing wait times for medical services (Willcox et al.
2007; Siciliani and Hurst 2004; Hurst and Siciliani 2003;
Blendon 2002). Sometimes these waits may have little
medical impact, but excessive delays may be detrimental to
patients’ health (CIHR 2007). As a result, there is growing
public and patient pressure on political leaders to reduce
wait times to acceptable levels.

The First Ministers’ Meeting on the Future of Health Care
(2004) committed Canada to a program of determining, and
then meeting, wait time benchmarks for cancer care, cardiac
care, diagnostic imaging, joint replacement and sight restora-
tion. These benchmarks provide “evidence based goals that
express the amount of time that clinical evidence shows is
appropriate to wait for a particular procedure or diagnos-
tic test” (Postl 2006). Postl (2006), in his final report as

* Reprinted from Healthcare Policy Volume 3, Number 3.

Federal Advisor on Wait Times, noted that “we [in healthcare
management] have not sufficiently exploited the academic
resources available to us from business management schools
or industrial engineering.” In particular, he singled out opera-
tions research (OR) as especially relevant.

Operations research is the science of developing and
applying mathematical models to provide decision-makers
with better strategies to plan and operate systems. Through
systems models and “what if?” analyses, it enables investiga-
tion of the impact of system changes prior to implementation.
This paper uses OR methods to provide insight into the
relationship between wait times and capacity. Through a case
study, it also shows how our basic research on patient sched-
uling algorithms (Patrick et al. 2007) can reduce wait times
by judiciously using surge capacity in the form of overtime.

Why Are There Waits for Access to Healthcare?
Wait times for health services arise because

* capacity does not match demand,

* capacity or demand is not well managed and

o there is significant variability over time in the demand for
healthcare services.

By capacity, we mean the maximum rate at which a resource
can deliver a service when operating at peak efficiency
(Anupindi et al. 2005). Capacity is controlled through invest-
ment in and scheduling the use of people, physical plant and
equipment. Setting capacity levels entails an unavoidable
trade-off between wait times and resource utilization.

* When capacity significantly exceeds average demand,
queues will be short and wait times minimal. Unfortunately,

Healthcare Quarterly Vol.11 No.3 2008 77



Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity Jonathan Patrick and Martin L. Puterman

because of variability in the demand
over time, resources will be idle a large
portion of the time (Figure 1). 100

Figure 1. Theoretical relationship between wait time targets and idle capacity
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average demand, system resources will "
be fully utilized, but wait times will be ‘5 'E 7
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exceeds average demand, queuing § %,
theory (Hillier and Lieberman 2001) s %
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To ensure only 5% of patients
exceed wait time target, there will
be idle capacity 23% of the time.

limit). In this case, resources will be 0
utilized most of the time.

Decisions regarding investment in
capacity must explicitly account for
the trade-off between capacity, idleness
and wait times. The relation depicted in
Figure 1 derives from fundamental queuing theory (Hillier
and Lieberman 2001: 854-55). It shows that to ensure that
a low proportion (percentage) of patients’ wait times exceed
specified targets, capacity must be set sufficiently high so
that idle time is inevitable. The specific case indicated by
the dotted line shows that to ensure that only 5% of patients
exceed their wait time targets, capacity will be idle 23%
of the time. Ingolfsson and Gallup (2003) developed the
Queueing ToolPak, which is an easy-to-use Excel add-in that
facilitates a wide range of queuing calculations that are useful
for capacity planning.

The Challenge of Measuring Wait Times

There are a number of complex issues that affect both the
setting and achieving of wait time targets. They include the
following:

* Patients are not homogeneous. Patients requiring urgent
care must receive services more quickly than those requir-
ing less urgent care. Hence, wait times must be assessed
against appropriate benchmarks for each priority class. A
report by the Health Council of Canada (2005) suggests
using the terminology “urgency” instead of “priority”
to avoid the negative connotations sometimes associ-
ated with the latter term. Further, it suggests using three
patient urgency classes.

»  Wait times, as currently measured, do not tell the whole story.
Usually, wait times are measured and reported from the
time at which a request for service (requisition) reaches
the service provider until the service is provided. They
do not account for upstream delays between the time at
which a service is first needed and the points at which the

20 40

Percentage of Time There Is Idle Capacity

Note:Calculations are based on a single server exponential queuing model with arrival rate 10 per week, service rate varied
from 16 to 10 per week and a target of one-week service.

series of referring physicians can see and enter the patient
into the appropriate queue.

 Averages are not enough. Wait times vary among patients,
over time and among sites and measures. This variability
must therefore be part of any performance measurement
system. Further, wait time distributions tend to be skewed.
We strongly recommend using metrics of the form: “What
proportion of patients of a specific priority class receive
the service within a specific, clinically desirable time?” The
advantage of such metrics is that they provide meaningful
guarantees to decision-makers and system users.

» Accurate wait time data are not readily available. Most data
systems we have encountered do not provide complete
wait time data. The biggest challenges are that time
stamps are not accurate, data reside in different offices
and databases are not linked. Further, relevant data are
often not available in electronic form.

Levers for Managing Capacity: The Impact of
Operations Research

Operations research methods can help health systems manag-
ers plan and manage capacity to meet wait time targets in the
following ways:

* Capacity planning addresses the issue of how much capac-
ity is needed to meet current and future wait time targets.
Systemwide planning models based on linear and integer
programming (Santibanez et al. 2007) can determine
where and when to add system capacity.

* Capacity management addresses the question of how to
assign demand to capacity to ensure that it is used as
efficiently as possible. Levers to manage capacity efficiently

78 Healthcare Quarterly Vol.11 No.3 2008



Jonathan Patrick and Martin L. Puterman Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity

include improved patient scheduling, improved staff
scheduling and modelling the entire system to account
for and manage all resources a patient will need when
scheduling services. Simulation, linear programming and
Markov decision processes support such analyses.

* Surge capacity management provides a hybrid approach to
planning and controlling capacity. Surge capacity refers
to extra capacity (such as overtime) that can be sourced
when needed to meet excess demand. Often, surge capac-
ity is more expensive than base capacity, but its advantage
is that it is not needed all the time. As noted above, when
capacity is set sufficiently high so that wait time targets
are achieved, capacity will be idle a significant fraction of
the time. On the other hand, if capacity is set so that it
is fully utilized, then a large fraction of patients will not
achieve their wait time targets. A way around this trade-off
is to have additional flexible or surge capacity that allows
the system to function with less base capacity, and there-
fore less unused capacity, while still meeting demand.
Managing surge capacity requires both determining an
appropriate base capacity and developing rules that specify
when and how much surge capacity should be used.

Postl (2006) stresses the need for research to explore the
use and benefits of surge capacity. This paper answers that
call by providing a case study that illustrates how operations
research methods can help a manager develop rules to use
surge capacity, in the form of overtime, to achieve wait time
targets by developing efficient multi-priority patient schedul-
ing rules. It does not address the issue of setting base capacity
levels, which we shall address in future work.

The Need for Optimal Scheduling

In 2003, a team of investigators from the University of British
Columbia (including the authors) began a study with the
Vancouver Coastal Health Authority aimed at improving
diagnostic imaging processes at several Vancouver hospitals.
The team identified porter services and patient scheduling
as promising areas for investigation. As a result, we reviewed
porter services (Odegaard et al. 2007) and sought to develop
new methods to improve patient scheduling (Patrick and
Puterman 2007; Patrick et al. 2007). This paper translates
the latter research into a decision-making context.

In most healthcare settings, patient scheduling is carried
out by schedulers who must make complex trade-offs in the
absence of intelligent software and precise decision rules
to support their decisions. This activity becomes especially
challenging and complex when

* patients are categorized into priority classes with different
service time targets,

o there are multiple types of equipment with different
capabilities on which a patient can be scheduled,

* patients must be booked for a course of treatment requir-
ing several days or weeks or

* resources are spread across a wide geographic region.

Our research focused on the first issue and provides a
foundation for investigating the other challenges. The specific
problem our research investigated follows.

Each day, a random number of appointment requests
arrive. A scheduler reviews these requests and assigns them
to a pre-specified number of future appointment slots of
constant length. Each request has a priority assigned to it.
Patients with different priorities have different maximum
recommended wait times. The challenge that the scheduler
faces is that lower-priority patients must be booked “today”
(for an appointment slot some time in the future) prior to
knowing future demand. If patients are booked too far in
the future, their maximum recommended wait times may be
exceeded and staff and equipment may sit idle. If patients are
booked too soon, then there may not be sufficient capacity to
meet wait time targets for higher-priority patients arriving at
a later date. Our research provides precise decision rules to
enable schedulers to make these booking decisions and meet
high-priority targets for all priority classes. We refer to such
rules as optimal schedules. We will clarify what we mean by
“optimal” below.

Problems of this type have received some attention in
the operations research literature. Related papers within the
healthcare field include the work of Gerchak et al. (1996)
on allocating surgery time between elective and emergency
surgeries, Gupta and Wang’s (2008) paper on scheduling in
a primary care clinic with multiple priority levels and the
study by Green et al. (2006) on managing patient demand
for a diagnostic facility. Our work differs from the first paper
in that it considers more than two priority classes. In the two
other papers, the objective is to maximize revenue, allowing
the authors to focus on a single day rather than the entire
planning horizon. Our interest in achieving wait time targets
forces us to consider how actions taken on one day affect
future decisions so that we cannot look at a single day in
isolation. McGill and Van Ryzin (1999) summarize related
research on customer scheduling in the airline industry, and
Bassamboo et al. (2006) consider similar challenges facing
call-centre managers when scheduling operators. As far as we
know, there is no research on multi-class scheduling within
healthcare, where the goal is to achieve wait time targets.

Methodology
The results and policy insights of our research are based on a
Markov decision process (MDP) scheduling model. An MDP
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models a system in which decisions are made sequentially
over time, and future decisions and outcomes depend on
current and past decisions (Puterman 1994). Applying an
MDP provides an optimal policy that prescribes how best to
manage the system in any contingency. It offers a systematic
alternative to the “guess and check” approach that underlies
using simulation on its own to determine good policies. In
our setting, the system is described by the number of appoint-
ment slots available on each future day and the number of
patients of each priority class waiting to be booked. A policy
provides the scheduler with a set of rules specifying when in
the future to schedule each waiting patient. Unfortunately,
to determine optimal policies for realistic-sized systems, the
MDP model becomes challenging, if not impossible, to apply.

Over the past decade, researchers in operations research,
engineering and computer science (Bertsekas and Tsitsiklis
1996; Sutton and Barto 1998) have developed a new branch
of operations research called approximate dynamic program-
ming (ADP) that seeks to overcome such computational
challenges. ADP methods produce good but not necessar-
ily optimal solutions to the underlying problem. Policies
obtained through ADP must be evaluated by testing them
in a system simulation model. We use a simulation model
to compare the optimal scheduling rules derived from the
ADP with a range of alternatives, including current practice.
As we will show below, the policy derived from our research
outperforms both current practice and reasonable alternative
policies. In this paper, we will use the expression “optimal” to
refer to the policy obtained from the application of the ADP.
However, how to quantify the proximity of this policy to the
true optimal solution of the underlying problem remains a
research challenge.

Optimal Scheduling Policy

The optimal scheduling (OS) policy assumes an externally
determined fixed number of appointment slots of fixed length
each day and the potential to use overtime as surge capacity.
We find it by formulating an MDP model of the scheduling
problem and using ADP methods to solve it. In this applica-
tion, the policy has an intuitively appealing form, which we
describe in Table 1. This policy can be easily integrated in a
decision support tool, or communicated directly to schedul-
ers as a set of easy-to-follow rules.

Our research shows that it is never advisable to book
patients beyond their wait time targets. Doing so does not
avoid the need for overtime; instead, it just delays when it
is needed. For lower-priority patients, scheduling them as
late as possible without exceeding the wait time target for
their priority class gives the scheduler maximum flexibility to
account for future demand variability.

Our research also shows that OS policy remains optimal

Table 1. Optimal scheduling policy

e Fill any unused capacity for the next day by assigning patients to
that day in priority order.

Schedule any remaining high-priority demand to the earliest
available time slots before the maximum recommended wait
time for this class.

If there is outstanding high-priority demand that cannot be
scheduled prior to its maximum recommended wait time, serve it
through overtime.

Schedule all other priority classes starting from the last
available day that does not exceed the maximum recommended
waiting time for that priority class, scheduling patients in priority
class order.

If there is insufficient capacity to schedule demand prior to its
target date after all higher-priority classes have been allocated
in the order described above, use overtime to serve this demand.

regardless of the number of priority classes, the specific
wait time targets for each priority class and the length of
the booking horizon. Also, it remains optimal for all reason-
able overtime (OT) costs and as long as capacity is not
significantly greater than average demand. In the unlikely
circumstance that there is a large amount of excess capac-
ity, then the optimal policy becomes instead a first come,
first served policy. If capacity is significantly below average
demand, the same policy remains optimal but OT costs may
become excessive.

Comparison with Other Policies

To illustrate the benefits of using the OS policy, we focus on
scheduling outpatient (OP) demand for a single diagnostic
resource. We assume three OP priority classes; that regular
hour capacity equals the average demand; that the three
OP priority classes have maximum recommended waiting
times of 7, 14 and 21 days, respectively; and that unlim-
ited overtime capacity is available. Each day, the scheduler
may assign patients to any day up to 30 days into the future
(the booking horizon). We developed and used a simula-
tion model of the patient arrival and scheduling process to
compare the performance of different policies.

Figure 2 summarizes output for the simulation model
and shows that the OS policy achieves all wait time targets.
Additional output from the simulation (not shown here)
indicates that fewer than 1.5% of patients are served through
overtime. This percentage is equivalent to one overtime scan
every 20 days (but the need for overtime comes in batches).
Thus, the judicious use of surge capacity, in the form of
overtime, achieves target wait times without adding costly
base capacity. Though surge capacity may be more expensive
to supply on a per case basis, using it in the manner described
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above will prove less costly over the
long term than maintaining a base

Figure 2. Waiting times by priority class for the OS policy

capacity that is sufficiently high to .
achieve wait time targets. Of course, ' O3 Priority 3
managers face the challenge of B Prioriy 2
ensuring that a sufficient number of £ 150,000 W Priority 1
staff are available to work overtime. B
We also used the simulation 5
model to compare the OS policy é 100,000
to a booking limit (BL) policy and =
an overtime “only as a last resort” 50,000
policy (OTLR), that is, a policy
that uses overtime only when .
there is no available capacity in the 0 w w B B B
1 3 5 7 9 1 13 15 17 19 20 23 25 27 29

booking horizon. BL policies have
been widely used in the airline
industry to reserve seating capac-
ity for late-arriving, high-priority
demand. A BL policy will book a
patient on a given day only if the available unused capacity
for that patients priority class on that day exceeds a predeter-
mined booking limit. The amount of reserved capacity varies
with the priority class of the patient; the lower the priority
class, the more space needs to be available before a booking
will be made. Determining optimal booking limits requires
solving another optimization problem, or enumerating all
possibilities and evaluating them with simulation (Patrick
et al. 2007). A BL policy will use overtime only if there is no
available space for the priority class of the waiting patient
over the planning horizon. The OTLR policy has appeared
in some collective agreements. Comparisons are summarized
in Table 2.

Clearly, the OS policy not only requires less overtime
than the BL policy but also results in shorter wait times for
all priority classes. The OTLR policy requires significantly
less overtime but at the cost of a significant number of late
bookings. Figure 3 provides the waiting time distribution by
priority class for the OTLR policy. The dramatic improvement
in wait times at the expense of low overtime costs clearly

Table 2. Comparison of the OS, BL and OTLR policies based on simulation

Waiting Time (days)

demonstrates the value of the OS policy over the OTLR
policy from the perspective of meeting wait time targets.

Current practice does not seek to address outpatient
demand through overtime. Instead, the booking horizon
is pushed farther into the future. The OS policy provides a
practical alternative to current practice without extending
the booking horizon. As long as not scheduling a patient past
a wait time target is an important criterion, the OS policy will
significantly outperform current practice.

Including Inpatient Demand

Although the OS policy described in Table 1 remains
“optimal” when inpatients are included in the model, there is
a significant increase in overtime. This is because the highest-
priority patient class must now be served the day the request
is placed (current practice for inpatient demand), whereas in
the setting described above, the highest-priority class could
be served any time in the first week. This approach signif-
icantly affects a scheduler’s ability to manage variability in
demand. We therefore investigated the potential benefits of
introducing flexibility into
inpatient scheduling. In
fact, in the setting we inves-
tigated, there was already

Policy % Late % Served through OT flexibility in inpatient
Priority 1 Priority 2 Priority 3 Priority1 Priority 2 Priority 3 Total scheduhpg that was .not

being utilized. The prior-

0S 0 0 0 1.44 0 0 0.72 ity scheme for inpatients
implemented in Vancouver

BL 0 0.02 49.572 0 0 20.57 413 in 2003 designated a
OTLR 53.17 35.77 2485 0.08 0.43 0 0.17 category of inpatients who

can wait one day to receive
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Figure 3. Waiting time by priority class for the OTLR policy
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a scan. Current practice ignores this flexibility and schedules
all inpatient scans on the day of the request.

To apply our approach we used the OS policy with five
priority classes, the three described above and one- and two-
day targets for inpatients. Evaluating this policy through
simulation showed that if only 10% of patients can wait one
day for service, the average number of overtime scans per day
was reduced from 4.27 to 2.67. Furthermore, overtime was
required only for the highest-priority inpatients. Of course,
if delaying a diagnostic procedure delayed inpatient release
time, the resulting additional cost might offset any benefit.

These results run contrary to the current practice of
seeking to improve wait times by pushing the wait time target
of the lowest-priority class farther into the future. In fact,
though there may be a temporary relief to the system from
doing so, there is no long-term benefit to be gained from
manipulating the wait time target of the lowest-priority class.
Rather, it is the wait time target of the highest-priority class
that is the driving factor in determining the required amount
of overtime. Admittedly, there may be little flexibility in the
scheduling of the highest-priority class, but the above results
suggest that any amount of flexibility is worth pursuing.

When Is Optimal Scheduling Beneficial?

The OS policy proposed here manages the trade-off between
unused capacity and overtime. When base capacity far
exceeds average demand, the scheduler can use a first come,
first served policy because capacity is unlikely to be fully
utilized. However, in such a case, capacity will be underuti-
lized, and resources will be idle a significant portion of the
time. Conversely, if capacity is far below average demand,
then a wide range of scheduling policies will probably do

issue suggests that the base optimal
capacity would be somewhat
below average demand, the precise
amount depending on overtime
costs and demand rates.

We emphasize that two factors
cause excessive waiting times: the amount of demand and its
variability. Optimal scheduling can help mitigate the effect
of variability. If average demand outstrips available capacity
(regular and overtime), then no optimal schedule will help.
However, even if base capacity is sufficient to meet average
demand, there will still be increasing wait times owing to the
variability in demand unless overtime is used appropriately.
It is in such a scenario that the optimal scheduling policy
will allow the resource manager to minimize unused capac-
ity (which implicitly minimizes wait times) with the least
amount of overtime.

23 25 72729

Conclusions
When we began our study for the Vancouver Coastal Health
Authority, the question posed to us was, “Where should a
new CT scanner be located?” What our analysis revealed was
that there was a significant amount of capacity that could
be recovered by utilizing existing resources more efficiently.
We recognized that one way to achieve this efficiency was
through better patient scheduling. This finding led to our
research on patient scheduling methods, which produced
the OS policy, which in turn was shown through simulation
to achieve wait time targets. Thus, even if more capacity is
required, managers must first ensure that current capacity is
used to its fullest potential.

In addition to the OS scheduling rule, we drew the follow-
ing policy implications from our research:

¢ In the absence of surge capacity (in the form of overtime),
there will either be significant wait times or significant
idle capacity.

e With a small amount of overtime, wait times can be
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maintained within the targets without significant excess
capacity.

* The amount of overtime required depends heavily on
the wait time target for the highest-priority class; if it is
short, overtime needs are likely to be high. Classifying
high-priority patients carefully and seeking subclasses
with different targets could be useful levers for reducing
overtime costs.

We hope that this work will prove useful to healthcare
managers and policy makers and, as well, whet their appetite
for further healthcare operations research studies.

Correspondence may be directed to: Martin L. Puterman,
Research Director, UBC Centre for Health Care Management,
2053 Main Mall, Vancouver, BC, V6T 1Z2. Tel: 604-822-
8388; e-mail: Martin.Puterman@sauder.ubc.ca.
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