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ABSTRACT
Widespread public demand for improved access, political 
pressure for shorter wait times, a stretched workforce, an aging 
population and overutilized equipment and facilities challenge 
healthcare leaders to adopt new management approaches. This 
paper highlights the significant benefits that can be achieved 
by applying operations research (OR) methods to healthcare 
management. It shows how queuing theory provides managers 
with insights into the causes for excessive wait times and the 
relationship between wait times and capacity. It provides a case 
study of the use of several OR methods, including Markov decision 
processes, linear programming and simulation, to optimize the 
scheduling of patients with multiple priorities. The study shows 
that by applying this approach, wait time targets can be attained 
with the judicious use of surge capacity in the form of overtime. 
It concludes with some policy insights.

Healthcare systems throughout the world face long and 
increasing wait times for medical services (Willcox et al. 
2007; Siciliani and Hurst 2004; Hurst and Siciliani 2003; 
Blendon 2002). Sometimes these waits may have little 
medical impact, but excessive delays may be detrimental to 
patients’ health (CIHR 2007). As a result, there is growing 
public and patient pressure on political leaders to reduce 
wait times to acceptable levels. 

The First Ministers’ Meeting on the Future of Health Care 
(2004) committed Canada to a program of determining, and 
then meeting, wait time benchmarks for cancer care, cardiac 
care, diagnostic imaging, joint replacement and sight restora-
tion. These benchmarks provide “evidence based goals that 
express the amount of time that clinical evidence shows is 
appropriate to wait for a particular procedure or diagnos-
tic test” (Postl 2006). Postl (2006), in his final report as 

Federal Advisor on Wait Times, noted that “we [in healthcare 
management] have not sufficiently exploited the academic 
resources available to us from business management schools 
or industrial engineering.” In particular, he singled out opera-
tions research (OR) as especially relevant. 

Operations research is the science of developing and 
applying mathematical models to provide decision-makers 
with better strategies to plan and operate systems. Through 
systems models and “what if?” analyses, it enables investiga-
tion of the impact of system changes prior to implementation. 
This paper uses OR methods to provide insight into the 
relationship between wait times and capacity. Through a case 
study, it also shows how our basic research on patient sched-
uling algorithms (Patrick et al. 2007) can reduce wait times 
by judiciously using surge capacity in the form of overtime.

Why Are There Waits for Access to Healthcare?
Wait times for health services arise because

• capacity does not match demand,
• capacity or demand is not well managed and 
• there is significant variability over time in the demand for 

healthcare services. 

By capacity, we mean the maximum rate at which a resource 
can deliver a service when operating at peak efficiency 
(Anupindi et al. 2005). Capacity is controlled through invest-
ment in and scheduling the use of people, physical plant and 
equipment. Setting capacity levels entails an unavoidable 
trade-off between wait times and resource utilization.

• When capacity significantly exceeds average demand, 
queues will be short and wait times minimal. Unfortunately, 
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because of variability in the demand 
over time, resources will be idle a large 
portion of the time (Figure 1).

• When capacity is significantly below 
average demand, system resources will 
be fully utilized, but wait times will be 
excessive and will grow over time.

• Even when capacity equals or slightly 
exceeds average demand, queuing 
theory (Hillier and Lieberman 2001) 
implies that there will be long waits 
(in theory, they will be infinite in the 
limit). In this case, resources will be 
utilized most of the time. 

Decisions regarding investment in 
capacity must explicitly account for 
the trade-off between capacity, idleness 
and wait times. The relation depicted in 
Figure 1 derives from fundamental queuing theory (Hillier 
and Lieberman 2001: 854–55). It shows that to ensure that 
a low proportion (percentage) of patients’ wait times exceed 
specified targets, capacity must be set sufficiently high so 
that idle time is inevitable. The specific case indicated by 
the dotted line shows that to ensure that only 5% of patients 
exceed their wait time targets, capacity will be idle 23% 
of the time. Ingolfsson and Gallup (2003) developed the 
Queueing ToolPak, which is an easy-to-use Excel add-in that 
facilitates a wide range of queuing calculations that are useful 
for capacity planning.

The Challenge of Measuring Wait Times
There are a number of complex issues that affect both the 
setting and achieving of wait time targets. They include the 
following:

•  Patients are not homogeneous. Patients requiring urgent 
care must receive services more quickly than those requir-
ing less urgent care. Hence, wait times must be assessed 
against appropriate benchmarks for each priority class. A 
report by the Health Council of Canada (2005) suggests 
using the terminology “urgency” instead of  “priority” 
to avoid the negative connotations sometimes associ-
ated with the latter term. Further, it suggests using three 
patient urgency classes.

• Wait times, as currently measured, do not tell the whole story. 
Usually, wait times are measured and reported from the 
time at which a request for service (requisition) reaches 
the service provider until the service is provided. They 
do not account for upstream delays between the time at 
which a service is first needed and the points at which the 

series of referring physicians can see and enter the patient 
into the appropriate queue. 

•  Averages are not enough. Wait times vary among patients, 
over time and among sites and measures. This variability 
must therefore be part of any performance measurement 
system. Further, wait time distributions tend to be skewed. 
We strongly recommend using metrics of the form: “What 
proportion of patients of a specific priority class receive 
the service within a specific, clinically desirable time?” The 
advantage of such metrics is that they provide meaningful 
guarantees to decision-makers and system users. 

• Accurate wait time data are not readily available. Most data 
systems we have encountered do not provide complete 
wait time data. The biggest challenges are that time 
stamps are not accurate, data reside in different offices 
and databases are not linked. Further, relevant data are 
often not available in electronic form.

Levers for Managing Capacity: The Impact of 
Operations Research
Operations research methods can help health systems manag-
ers plan and manage capacity to meet wait time targets in the 
following ways:

•  Capacity planning addresses the issue of how much capac-
ity is needed to meet current and future wait time targets. 
Systemwide planning models based on linear and integer 
programming (Santibanez et al. 2007) can determine 
where and when to add system capacity. 

•  Capacity management addresses the question of how to 
assign demand to capacity to ensure that it is used as 
efficiently as possible. Levers to manage capacity efficiently 

Figure 1. Theoretical relationship between wait time targets and idle capacity
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Note: Calculations are based on a single server exponential queuing model with arrival rate 10 per week, service rate varied 

from 16 to 10 per week and a target of one-week service.
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include improved patient scheduling, improved staff 
scheduling and modelling the entire system to account 
for and manage all resources a patient will need when 
scheduling services. Simulation, linear programming and 
Markov decision processes support such analyses. 

• Surge capacity management provides a hybrid approach to 
planning and controlling capacity. Surge capacity refers 
to extra capacity (such as overtime) that can be sourced 
when needed to meet excess demand. Often, surge capac-
ity is more expensive than base capacity, but its advantage 
is that it is not needed all the time. As noted above, when 
capacity is set sufficiently high so that wait time targets 
are achieved, capacity will be idle a significant fraction of 
the time. On the other hand, if capacity is set so that it 
is fully utilized, then a large fraction of patients will not 
achieve their wait time targets. A way around this trade-off 
is to have additional flexible or surge capacity that allows 
the system to function with less base capacity, and there-
fore less unused capacity, while still meeting demand. 
Managing surge capacity requires both determining an 
appropriate base capacity and developing rules that specify 
when and how much surge capacity should be used.

Postl (2006) stresses the need for research to explore the 
use and benefits of surge capacity. This paper answers that 
call by providing a case study that illustrates how operations 
research methods can help a manager develop rules to use 
surge capacity, in the form of overtime, to achieve wait time 
targets by developing efficient multi-priority patient schedul-
ing rules. It does not address the issue of setting base capacity 
levels, which we shall address in future work.

The Need for Optimal Scheduling 
In 2003, a team of investigators from the University of British 
Columbia (including the authors) began a study with the 
Vancouver Coastal Health Authority aimed at improving 
diagnostic imaging processes at several Vancouver hospitals. 
The team identified porter services and patient scheduling 
as promising areas for investigation. As a result, we reviewed 
porter services (Odegaard et al. 2007) and sought to develop 
new methods to improve patient scheduling (Patrick and 
Puterman 2007; Patrick et al. 2007). This paper translates 
the latter research into a decision-making context. 

In most healthcare settings, patient scheduling is carried 
out by schedulers who must make complex trade-offs in the 
absence of intelligent software and precise decision rules 
to support their decisions. This activity becomes especially 
challenging and complex when

• patients are categorized into priority classes with different 
service time targets, 

•  there are multiple types of equipment with different 
capabilities on which a patient can be scheduled,

• patients must be booked for a course of treatment requir-
ing several days or weeks or

• resources are spread across a wide geographic region.

Our research focused on the first issue and provides a 
foundation for investigating the other challenges. The specific 
problem our research investigated follows.

Each day, a random number of appointment requests 
arrive. A scheduler reviews these requests and assigns them 
to a pre-specified number of future appointment slots of 
constant length. Each request has a priority assigned to it. 
Patients with different priorities have different maximum 
recommended wait times. The challenge that the scheduler 
faces is that lower-priority patients must be booked “today” 
(for an appointment slot some time in the future) prior to 
knowing future demand. If patients are booked too far in 
the future, their maximum recommended wait times may be 
exceeded and staff and equipment may sit idle. If patients are 
booked too soon, then there may not be sufficient capacity to 
meet wait time targets for higher-priority patients arriving at 
a later date. Our research provides precise decision rules to 
enable schedulers to make these booking decisions and meet 
high-priority targets for all priority classes. We refer to such 
rules as optimal schedules. We will clarify what we mean by 
“optimal” below.

Problems of this type have received some attention in 
the operations research literature. Related papers within the 
healthcare field include the work of Gerchak et al. (1996) 
on allocating surgery time between elective and emergency 
surgeries, Gupta and Wang’s (2008) paper on scheduling in 
a primary care clinic with multiple priority levels and the 
study by Green et al. (2006) on managing patient demand 
for a diagnostic facility. Our work differs from the first paper 
in that it considers more than two priority classes. In the two 
other papers, the objective is to maximize revenue, allowing 
the authors to focus on a single day rather than the entire 
planning horizon. Our interest in achieving wait time targets 
forces us to consider how actions taken on one day affect 
future decisions so that we cannot look at a single day in 
isolation. McGill and Van Ryzin (1999) summarize related 
research on customer scheduling in the airline industry, and 
Bassamboo et al. (2006) consider similar challenges facing 
call-centre managers when scheduling operators. As far as we 
know, there is no research on multi-class scheduling within 
healthcare, where the goal is to achieve wait time targets. 

Methodology
The results and policy insights of our research are based on a 
Markov decision process (MDP) scheduling model. An MDP 
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models a system in which decisions are made sequentially 
over time, and future decisions and outcomes depend on 
current and past decisions (Puterman 1994). Applying an 
MDP provides an optimal policy that prescribes how best to 
manage the system in any contingency. It offers a systematic 
alternative to the “guess and check” approach that underlies 
using simulation on its own to determine good policies. In 
our setting, the system is described by the number of appoint-
ment slots available on each future day and the number of 
patients of each priority class waiting to be booked. A policy 
provides the scheduler with a set of rules specifying when in 
the future to schedule each waiting patient. Unfortunately, 
to determine optimal policies for realistic-sized systems, the 
MDP model becomes challenging, if not impossible, to apply.

Over the past decade, researchers in operations research, 
engineering and computer science  (Bertsekas and Tsitsiklis 
1996; Sutton and Barto 1998) have developed a new branch 
of operations research called approximate dynamic program-
ming (ADP) that seeks to overcome such computational 
challenges. ADP methods produce good but not necessar-
ily optimal solutions to the underlying problem. Policies 
obtained through ADP must be evaluated by testing them 
in a system simulation model. We use a simulation model 
to compare the optimal scheduling rules derived from the 
ADP with a range of alternatives, including current practice. 
As we will show below, the policy derived from our research 
outperforms both current practice and reasonable alternative 
policies. In this paper, we will use the expression “optimal” to 
refer to the policy obtained from the application of the ADP. 
However, how to quantify the proximity of this policy to the 
true optimal solution of the underlying problem remains a 
research challenge. 

Optimal Scheduling Policy
The optimal scheduling (OS) policy assumes an externally 
determined fixed number of appointment slots of fixed length 
each day and the potential to use overtime as surge capacity. 
We find it by formulating an MDP model of the scheduling 
problem and using ADP methods to solve it. In this applica-
tion, the policy has an intuitively appealing form, which we 
describe in Table 1. This policy can be easily integrated in a 
decision support tool, or communicated directly to schedul-
ers as a set of easy-to-follow rules.

Our research shows that it is never advisable to book 
patients beyond their wait time targets. Doing so does not 
avoid the need for overtime; instead, it just delays when it 
is needed. For lower-priority patients, scheduling them as 
late as possible without exceeding the wait time target for 
their priority class gives the scheduler maximum flexibility to 
account for future demand variability. 

Our research also shows that OS policy remains optimal 

regardless of the number of priority classes, the specific 
wait time targets for each priority class and the length of 
the booking horizon. Also, it remains optimal for all reason-
able overtime (OT) costs and as long as capacity is not 
significantly greater than average demand. In the unlikely 
circumstance that there is a large amount of excess capac-
ity, then the optimal policy becomes instead a first come, 
first served policy. If capacity is significantly below average 
demand, the same policy remains optimal but OT costs may 
become excessive.

Comparison with Other Policies
To illustrate the benefits of using the OS policy, we focus on 
scheduling outpatient (OP) demand for a single diagnostic 
resource. We assume three OP priority classes; that regular 
hour capacity equals the average demand; that the three 
OP priority classes have maximum recommended waiting 
times of 7, 14 and 21 days, respectively; and that unlim-
ited overtime capacity is available. Each day, the scheduler 
may assign patients to any day up to 30 days into the future 
(the booking horizon). We developed and used a simula-
tion model of the patient arrival and scheduling process to 
compare the performance of different policies. 

Figure 2 summarizes output for the simulation model 
and shows that the OS policy achieves all wait time targets. 
Additional output from the simulation (not shown here) 
indicates that fewer than 1.5% of patients are served through 
overtime. This percentage is equivalent to one overtime scan 
every 20 days (but the need for overtime comes in batches). 
Thus, the judicious use of surge capacity, in the form of 
overtime, achieves target wait times without adding costly 
base capacity. Though surge capacity may be more expensive 
to supply on a per case basis, using it in the manner described 

Table 1. Optimal scheduling policy

•  Fill any unused capacity for the next day by assigning patients to 
that day in priority order.

•   Schedule any remaining high-priority demand to the earliest 
available time slots before the maximum recommended wait 
time for this class.

•   If there is outstanding high-priority demand that cannot be 
scheduled prior to its maximum recommended wait time, serve it 
through overtime.

•   Schedule all other priority classes starting from the last 
available day that does not exceed the maximum recommended 
waiting time for that priority class, scheduling patients in priority 
class order. 

•    If there is insufficient capacity to schedule demand prior to its 
target date after all higher-priority classes have been allocated 
in the order described above, use overtime to serve this demand.

Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity  Jonathan Patrick and Martin L. Puterman
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above will prove less costly over the 
long term than maintaining a base 
capacity that is sufficiently high to 
achieve wait time targets. Of course, 
managers face the challenge of 
ensuring that a sufficient number of 
staff are available to work overtime.

We also used the simulation 
model to compare the OS policy 
to a booking limit (BL) policy and 
an overtime “only as a last resort” 
policy (OTLR), that is, a policy 
that uses overtime only when 
there is no available capacity in the 
booking horizon. BL policies have 
been widely used in the airline 
industry to reserve seating capac-
ity for late-arriving, high-priority 
demand. A BL policy will book a 
patient on a given day only if the available unused capacity 
for that patient’s priority class on that day exceeds a predeter-
mined booking limit. The amount of reserved capacity varies 
with the priority class of the patient; the lower the priority 
class, the more space needs to be available before a booking 
will be made. Determining optimal booking limits requires 
solving another optimization problem, or enumerating all 
possibilities and evaluating them with simulation (Patrick 
et al. 2007). A BL policy will use overtime only if there is no 
available space for the priority class of the waiting patient 
over the planning horizon. The OTLR policy has appeared 
in some collective agreements. Comparisons are summarized 
in Table 2.

Clearly, the OS policy not only requires less overtime 
than the BL policy but also results in shorter wait times for 
all priority classes. The OTLR policy requires significantly 
less overtime but at the cost of a significant number of late 
bookings. Figure 3 provides the waiting time distribution by 
priority class for the OTLR policy. The dramatic improvement 
in wait times at the expense of low overtime costs clearly 

demonstrates the value of the OS policy over the OTLR 
policy from the perspective of meeting wait time targets. 

Current practice does not seek to address outpatient 
demand through overtime. Instead, the booking horizon 
is pushed farther into the future. The OS policy provides a 
practical alternative to current practice without extending 
the booking horizon. As long as not scheduling a patient past 
a wait time target is an important criterion, the OS policy will 
significantly outperform current practice. 

Including Inpatient Demand 
Although the OS policy described in Table 1 remains 
“optimal” when inpatients are included in the model, there is 
a significant increase in overtime. This is because the highest-
priority patient class must now be served the day the request 
is placed (current practice for inpatient demand), whereas in 
the setting described above, the highest-priority class could 
be served any time in the first week. This approach signif-
icantly affects a scheduler’s ability to manage variability in 
demand. We therefore investigated the potential benefits of 

introducing flexibility into 
inpatient scheduling. In 
fact, in the setting we inves-
tigated, there was already 
flexibility in inpatient 
scheduling that was not 
being utilized. The prior-
ity scheme for inpatients 
implemented in Vancouver 
in 2003 designated a 
category of inpatients who 
can wait one day to receive 

Figure 2. Waiting times by priority class for the OS policy
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Table 2. Comparison of the OS, BL and OTLR policies based on simulation 
 

Policy % Late % Served through OT

Priority 1 Priority 2 Priority 3 Priority1 Priority 2 Priority 3 Total

OS 0 0 0 1.44 0 0 0.72

BL 0 0.02 49.52 0 0 20.57 4.13

OTLR 53.17 35.77 24.85 0.08 0.43 0 0.17
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a scan. Current practice ignores this flexibility and schedules 
all inpatient scans on the day of the request. 

To apply our approach we used the OS policy with five 
priority classes, the three described above and one- and two-
day targets for inpatients. Evaluating this policy through 
simulation showed that if only 10% of patients can wait one 
day for service, the average number of overtime scans per day 
was reduced from 4.27 to 2.67. Furthermore, overtime was 
required only for the highest-priority inpatients. Of course, 
if delaying a diagnostic procedure delayed inpatient release 
time, the resulting additional cost might offset any benefit.

These results run contrary to the current practice of 
seeking to improve wait times by pushing the wait time target 
of the lowest-priority class farther into the future. In fact, 
though there may be a temporary relief to the system from 
doing so, there is no long-term benefit to be gained from 
manipulating the wait time target of the lowest-priority class. 
Rather, it is the wait time target of the highest-priority class 
that is the driving factor in determining the required amount 
of overtime. Admittedly, there may be little flexibility in the 
scheduling of the highest-priority class, but the above results 
suggest that any amount of flexibility is worth pursuing.

When Is Optimal Scheduling Beneficial?
The OS policy proposed here manages the trade-off between 
unused capacity and overtime. When base capacity far 
exceeds average demand, the scheduler can use a first come, 
first served policy because capacity is unlikely to be fully 
utilized. However, in such a case, capacity will be underuti-
lized, and resources will be idle a significant portion of the 
time. Conversely, if capacity is far below average demand, 
then a wide range of scheduling policies will probably do 

equally well, as there is likely to be 
little unused capacity. In such a 
case, overtime costs will be large.

As Figure 1 suggests, provid-
ing sufficient base capacity to meet 
all demand is unlikely to be cost 
effective. Nor is setting base capac-
ity so low that average demand 
significantly outstrips capacity. We 
suggest setting base capacity to 
minimize expected total costs of 
overtime and base capacity costs. 
Our limited exploration of this 
issue suggests that the base optimal 
capacity would be somewhat 
below average demand, the precise 
amount depending on overtime 
costs and demand rates. 

We emphasize that two factors 
cause excessive waiting times: the amount of demand and its 
variability. Optimal scheduling can help mitigate the effect 
of variability. If average demand outstrips available capacity 
(regular and overtime), then no optimal schedule will help. 
However, even if base capacity is sufficient to meet average 
demand, there will still be increasing wait times owing to the 
variability in demand unless overtime is used appropriately. 
It is in such a scenario that the optimal scheduling policy 
will allow the resource manager to minimize unused capac-
ity (which implicitly minimizes wait times) with the least 
amount of overtime.

Conclusions 
When we began our study for the Vancouver Coastal Health 
Authority, the question posed to us was, “Where should a 
new CT scanner be located?” What our analysis revealed was 
that there was a significant amount of capacity that could 
be recovered by utilizing existing resources more efficiently. 
We recognized that one way to achieve this efficiency was 
through better patient scheduling. This finding led to our 
research on patient scheduling methods, which produced 
the OS policy, which in turn was shown through simulation 
to achieve wait time targets. Thus, even if more capacity is 
required, managers must first ensure that current capacity is 
used to its fullest potential. 

In addition to the OS scheduling rule, we drew the follow-
ing policy implications from our research:

•  In the absence of surge capacity (in the form of overtime), 
there will either be significant wait times or significant 
idle capacity.

• With a small amount of overtime, wait times can be 

Figure 3. Waiting time by priority class for the OTLR policy
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maintained within the targets without significant excess 
capacity.

• The amount of overtime required depends heavily on 
the wait time target for the highest-priority class; if it is 
short, overtime needs are likely to be high. Classifying 
high-priority patients carefully and seeking subclasses 
with different targets could be useful levers for reducing 
overtime costs.

We hope that this work will prove useful to healthcare 
managers and policy makers and, as well, whet their appetite 
for further healthcare operations research studies.

Correspondence may be directed to: Martin L. Puterman, 
Research Director, UBC Centre for Health Care Management, 
2053 Main Mall, Vancouver, BC, V6T 1Z2. Tel: 604-822-
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